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Abstract
On the basis of viscoelastic theory of textile material, the viscoelastic solid model consisting 
of a spring element and viscous element either in series or parallel is one of the most useful 
research models to study the mechanical behaviour of fabrics. This paper presents a method 
to study the bending behaviour of wool/polyester fabrics using a model consisting of the 
three-element model in parallel with a sliding element on the assumption that the internal 
frictional moment is a constant during the bending processes. From the needs of practical 
study, a testing method has been presented to study the bending behaviour of wool/polyester 
fabrics using a KES-FB3 compression tester. A comparison and analysis of the experimental 
results and theoretical predictions indicate that the agreement between them is satisfactory.
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Nomenclature
M(k)	� total bending moment on the fab-

ric, cN.cm/cm;
Mv(k)	� viscoelastic bending moment of 

the fabric, cN.cm/cm;
Mf(k)	� frictional constraint in the fabric, 

cN.cm/cm;
k	 curvature of the fabric, cm-1;
E1 and E2  elasticity modulus of the springs,

cN.cm;
η	 viscosity coefficient, cN.cm.s;
ρ	 �rate of curvature variation of the 

fabric, cm-1/s;

a, b, c	 coefficients: 
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a, b, c    coefficients: a
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V     speed that upper plate moves at (cm/s); 
T0     initial separation between the plates at time t=0 (cm); 
T     separation of the plates at time t (cm); 
, , ,   coefficients in dependence on model parameters and experiment 

conditions: Va / ， cVTbe /0 ， cV/1 ，

VaTbM f /0

1 Introduction 
The shear and bending properties of fabrics at low-stress are of critical importance 
because many performance characteristics of textile materials and clothing, e.g. the 
handle, drape, formability, shape formation and wrinkle recovery of fabrics are 
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 c = η/(E1+E2);

V	� speed that upper plate moves at, 
cm/s;

T0	� initial separation between the 
plates at time t = 0, cm;

T	� separation of the plates at time t, 
cm;

α, β, γ, ω  coefficients in dependence on
model parameters and experi-
ment conditions: 
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.

	 Introduction
The shear and bending properties of fab-
rics at low-stress are of critical impor-
tance because many performance charac-
teristics of textile materials and clothing, 
e.g. the handle, drape, formability, shape 
formation and wrinkle recovery of fabrics 
are dependent on them [1]. The perfor-
mance of fabrics under most service con-
ditions depends largely on their bending 
behaviour. In addition to its shear rigid-
ity, the dependence of the drapability of 
an apparel fabric on its bending rigidity is 

also well known. The bending properties 
of a fabric are dependent on the mechan-
ical properties of fibres, the structure of 
yarns, as well as the weave and finishing 
of the fabric [2, 3]. 

Fundamental approaches to the bending 
and recovery behaviour of yarns and wo-
ven fabrics was given by Abott et al [4], 
De Jone and Postle [5], Ghosh et al [6-7] 
and Mohammad Ghane [8]. Modelling of 
the bending properties of woven fabrics 
requires knowledge of the relationship 
between fabric bending rigidity, struc-
tural features of the fabric, and tensile/
bending properties of the constituent 
yarns. It needs a large number of param-
eters to construct a model, and the solu-
tion is very difficult to express in a closed 
form. Thus the applicability of this kind 
of model is very limited. Numerical 
methods are also used in engineering 
for the stress-strain analysis of a struc-
ture. In Konopasek’s model [9, 10], the 
relationship between the moment and 
curvature of fabrics is analysed using 
the cubic-spline-interpolation method. 
The structure and deformation of fabrics 
at equilibrium under imposed loading 
can be calculated. Lloyd [11] and Brown 
[12] predicted the bending deformation 
of fabrics based on Konopasek’s model. 

In the study of fabric rheology from the 
phenomenological viewpoint, Oloff-
son [13] proposed a simple rheological 
model consisting of linearly elastic and 
frictional elements, which is successful-
ly used in many applications such as the 
bending and creasing of fabrics [14-18]. 
However, this model does not account for 
fibre viscoelastic processes which occur 
during fabric deformation and recovery. 
Chapman proposed a theoretical model 
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[19, 20] in which material is termed as 
“Generalised Linear Viscoelastic”, and 
the frictional couple associated with each 
fibre in bending is principally considered 
as a function of strain and absolute time 
[21, 22]. Fengjun Shi et al investigated 
the bending behaviour of woven fabrics, 
for simplicity’s sake, using linear viscoe-
lasticity theory [23]. Here the bending 
and recovery behaviour of wool/polyes-
ter fabrics is further analysed based on 
the work above. 

	 Theory
Generally speaking, fibre materials are 
intrinsically viscoelastic. For the purpose 
of simplifying the calculation, the fibres 
are assumed to be linearly viscoelastic 
and their mechanical properties can be 
described by the standard solid model. 
The fabric is considered to be a viscoe-
lastic sheet with internal frictional con-
straint. Thus the bending behaviour of 
the fabric can be analysed by a standard 
solid element in parallel with a frictional 
element, as shown in Figure 1. 

Suppose that the bending moment M and 
frictional constraint couple Mf of fabrics 
are functions of curvature k, then the 
bending moment-curvature can be de-
scribed as

)(k/k)()( f kMkMkM v
 （1）

where, M(k) is the total bending moment imposed on the fabric of unit width 
(cf.cm/cm), Mv(k) the viscoelastic bending moment of the fabric (cf.cm/cm), Mf(k)
the frictional constraint in the fabric (cf.cm/cm), and k is the curvature of the fabric 

(cm-1). k/k  is the sign of  curvature variation, which means that any curvature 

variation in the fabric is opposed by the frictional constraint Mf(k). 
  

Fig. 1 Rheological model for bending of fabric

The viscoelastic bending moment of the fabric can be analysed by the standard linear 
solid model, which consists of a spring element and  Voigt model in series. The 
constitutive equation of the three-element viscoelastic model is given by  
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In Equation (2), E1 and E2 are the elasticity modulus of the springs and  the 
viscosity coefficient. If the curvature of the fabric varies at a constant rate , the 
viscoelastic bending moment for the standard linear solid model can be derived as 
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Frictional constraint restricts the free movement of  fibres in fabric during bending 
and recovering. Although the size of the frictional component in the total coercive 
couple of fabrics varies with the maximum curvature imposed on the fabric [24], the 
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c = η/(E1 + E2). 

Frictional constraint restricts the free 
movement of fibres in fabric during bend-
ing and recovering. Although the size of 
the frictional component in the total co-
ercive couple of fabrics varies with the 
maximum curvature imposed on the fab-
ric [24], the frictional constraint couple is 
supposed to be a constant to simplify the 
analysis, as in earlier works [13, 15, 21]. 

From Equations (1) and (3), the total 
bending moment for the model in Fig-
ure 1, can be rewritten as

frictional constraint couple fM is supposed to be a constant to simplify the analysis,
as in earlier works [13, 15, 21].  

From Equations (1) and (3), the total bending moment for the model in Fig.1, can be 
rewritten as
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If a fabric strip is bent and compressed between two parallel plates, as illustrated in 
Fig. 2, the fabric would be deformed viscoelastically. When the upper plate moves 
downwards, the fabric strip is creased. When the upper plate moves upwards, the 
fabric strip is allowed to recover from creasing towards its original shape. The shape 
of the curved portion of the fabric strip is assumed to be a semicircle, while the other 
portions of the strip are assumed to be straight and always in contact with the parallel 
loading plates. It should be noted that there is a pure bending moment in the 
semi-circular portion of the fabric. However, the deformation of the fabric in the 
creasing test (Fig. 2)  results from a pair of compressive forces. Thus the 
simplification of geometry will lead to an error in the force that does not exceed 10% 
for linear elastic materials due to the difference in loading conditions [22 ]. 
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illustrated in Fig. 2. If the upper plate moves upwards and downwards at a constant 
speed V, the initial separation between the plates is T0 at time t=0, and the separation 
of the plates is T at time t. The compression stops when the creasing force reaches a 
preset maximum value Fm or the separation between the two plates reaches a 
minimum value Tm at time tm, that is Tm=T0-Vtm. And then the upper plate moves 
upwards immediately and the recovery process begins. The relationship between t, V,
T0 and T is as follows 
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Figure 2. Fabric geometry in compression and recovery.
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Table 1. Structure parameters of samples.

Samples Materials Weave Yarn number,
tex

Pick count,
picks/10 cm

Weight,
g/m2

Thickness,
cm

1# Wool Gabardine twill 24×20 410×375 175.0 0.0321
2# 70W/30T Serge twill 26×20 415×375 184.0 0.0335
3# 50W/50T Poplin plain 24×16 540×400 192.0 0.0324
4# 50W/50T Poplin plain 25×15 580×370 200.0 0.0344

Table 2. Parameters calculated for compression and recovery equations.

Samples
Parameters of compression equation Parameters of recovery equation
α β γ ω α β γ ω

1# warp -468.24 834.01 0.3165 -616.31 -932.40 850.53 0.5212 -444.26
1# weft -498.28 796.42 0.3539 -590.85 -827.11 709.48 0.5625 -383.75
2# warp -429.46 873.40 0.2885 -680.31 -807.78 800.60 0.4972 -460.13
2# weft -441.95 708.20 0.3564 -530.61 -756.23 757.22 0.5210 -492.23
3# warp -304.17 285.44 0.4435 -69.71 -951.55 687.47 0.5792 -196.59
3# weft -511.76 1004.49 0.3141 -826.29 -943.74 747.50 0.6199 -424.93
4# warp -525.11 822.27 0.3392 -551.25 -938.21 573.12 0.6289 -47.57
4# weft -480.88 913.59 0.3159 -730.21 -1048.73 1291.07 0.4599 -968.39

the upper plate moves upwards imme-
diately and the recovery process begins. 
The relationship between t, V, T0 and T 
is as follows

frictional constraint couple fM is supposed to be a constant to simplify the analysis,
as in earlier works [13, 15, 21].  

From Equations (1) and (3), the total bending moment for the model in Fig.1, can be 
rewritten as

bMbeattM f
ct   /)(                             (4) 

If a fabric strip is bent and compressed between two parallel plates, as illustrated in 
Fig. 2, the fabric would be deformed viscoelastically. When the upper plate moves 
downwards, the fabric strip is creased. When the upper plate moves upwards, the 
fabric strip is allowed to recover from creasing towards its original shape. The shape 
of the curved portion of the fabric strip is assumed to be a semicircle, while the other 
portions of the strip are assumed to be straight and always in contact with the parallel 
loading plates. It should be noted that there is a pure bending moment in the 
semi-circular portion of the fabric. However, the deformation of the fabric in the 
creasing test (Fig. 2)  results from a pair of compressive forces. Thus the 
simplification of geometry will lead to an error in the force that does not exceed 10% 
for linear elastic materials due to the difference in loading conditions [22 ]. 

Fig. 2 Fabric geometry in compression and recovery 

In the compression tester, the fabric strip is creased between two parallel plates, as 
illustrated in Fig. 2. If the upper plate moves upwards and downwards at a constant 
speed V, the initial separation between the plates is T0 at time t=0, and the separation 
of the plates is T at time t. The compression stops when the creasing force reaches a 
preset maximum value Fm or the separation between the two plates reaches a 
minimum value Tm at time tm, that is Tm=T0-Vtm. And then the upper plate moves 
upwards immediately and the recovery process begins. The relationship between t, V,
T0 and T is as follows 

VTTt /)( 0                       (5) 

Substituting Equation (5) for Equation (4), the total bending moment of fabrics can be 
obtained as  

T0

Tm

T

    (5)

Substituting Equation (5) for Equa-
tion (4), the total bending moment of 
fabrics can be obtained as 

)()( 0//0

V
aT

bMebeT
V
atM f

cVTcVT   (6) 

In order to simplify the description, the equation can be written as 
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are constants in dependence on model parameters and experiment conditions.

3 Experiment 

Four fabrics with good resilience are selected in this study: wool fabric and 
wool/polyester blended fabric. The structural parameters of the fabric samples are 
given in Table 1.  

The bending test is designed based on the KES-FB3 compression tester. The fabrics 
are cut into strips of 6cm2cm, with their longitudinal direction parallel to the warp or 
weft direction, respectively. The fabric strip is bent and placed between two parallel 
plates of the KES-FB3 compression tester. The upper end of the bent fabric strip is 
attached to the upper plate by a double-sided adhesive tape so that the sample remains 
flat against the surfaces of the plates during the test. The initial separation of the 
plates T0 is equal to 4.16 mm (T0=0.416 cm). The upper plate moves downwards at a 
speed of 0.04 mm/s (V=0.004 cm/s) during the experiment. When the compression 
force reaches a preset value F0, the upper plate reverses its travel direction 
instantaneously. When the separation of the plates reaches a preset maximum value T0,
the upper plate stops to end the test. The relationship between the 
compression/recovery force and the separation of the plates is recorded for each 
sample. 

Table 1 Structure parameters of samples. 
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All fabric samples are preconditioned and experiments are carried out at an ambient 
condition of 65RH and 20C. Five warp and five weft specimens are tested in each 
case. 

4 Results and Discussion 

Creasing and recovery tests are conducted using a KES-FB3 compression tester. The 
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stants in dependence on model parame-
ters and experiment conditions.

	 Experiment
Four fabrics with good resilience are 
selected in this study: wool fabric and 
wool/polyester blended fabric. The struc-
tural parameters of the fabric samples are 
given in Table 1. 

The bending test is designed based on the 
KES-FB3 compression tester. The fab-
rics are cut into strips of 6 cm × 2 cm, 
with their longitudinal direction parallel 
to the warp or weft direction, respective-
ly. The fabric strip is bent and placed be-
tween two parallel plates of the KES-FB3 
compression tester. The upper end of the 
bent fabric strip is attached to the upper 
plate by a double-sided adhesive tape so 
that the sample remains flat against the 
surfaces of the plates during the test. 
The initial separation of the plates T0 
is equal to 4.16 mm (T0 = 0.416 cm). 
The upper plate moves downwards at 
a speed of 0.04 mm/s (V = 0.004 cm/s) 
during the experiment. When the com-
pression force reaches a preset value F0, 
the upper plate reverses its travel direc-
tion instantaneously. When the separa-
tion of the plates reaches a preset max-
imum value T0, the upper plate stops to 
end the test. The relationship between the 
compression/recovery force and the sep-
aration of the plates is recorded for each 
sample.

All fabric samples are preconditioned 
and experiments are carried out at an 
ambient condition of 65%RH and 20 °C. 
Five warp and five weft specimens are 
tested in each case.

	 Results and discussion
Creasing and recovery tests are conduct-
ed using a KES-FB3 compression tester. 
The relationship between the creasing 
force and separation of the plates for the 
fabrics are recorded. Theoretical calcula-
tions are made according to Equation (7), 
deduced above. Parameters α, β, γ and ω 
for the fabrics are listed in Table 2. 

Comparisons of the theoretical calcu-
lations and experimental results are il-
lustrated in Figures 3-6. The abscissa 
in the Figures is the separation between 
the plates. When the fabric strip is com-
pressed, the separation between the plates 
decreases, while the compression force 
increases gradually. When the creasing 
force reaches a preset value F0 = 60 cN, 
the upper plate reverses its travel direc-
tion instantaneously, and the crease re-
covery process begins. During the initial 
process of compression, the separation 
distance between the plates is relatively 
large, while the corresponding creasing 
force is quite small, which may lead to 
larger error due to the accuracy of the 
tester. Thus the comparison between the 
theoretical calculation and experimental 
results begins from a separation distance 
of 1.8 mm. Even so, there is still a dis-
crepancy between the calculation and 
experimental results for some fabrics, 
which is because there is little increase in 
the compression force with a decrease in 
the separation between the plates during 
the initial compression process. On the 
contrary, the compression force increases 
dramatically with a fractional decrease 

in the separation of the plates. It should 
be said that the accuracy of measurement 
gradually reaches the normal as the com-
pression process continues. Thus good 
agreement between theoretical expecta-
tion and experimental results is obtained.

It can be seen from Figures 3-6 that the 
recovery force is less than the compres-
sion force. When a fabric is deformed un-
der a creasing or bending force, as is well 
known, its deformation consists of three 
parts: instantaneous elastic deformation, 
delayed viscoelastic deformation, and 
permanent plastic deformation. When the 
load is removed, the elastic deformation 
can recover immediately, while delayed 
viscoelastic deformation recovers grad-
ually with time, and permanent plastic 
deformation is irreversible. In the stand-
ard linear solid element in Figure 1, the 
spring element presents instantaneous 
deformation, and the Voigt element pre-
sents delayed deformation. The frictional 
element which is connected to the stand-
ard linear solid element in parallel pre-
vents the fibre material from bending on 
the one hand, but it also stops the recov-
ery of the fibre material from bending on 
the other. To some extent, the frictional 
element presents permanent deformation. 
It is the delayed elastic and irreversible 
deformation that make the recovery force 
smaller than the compression force.

These comparisons show that the model 
proposed, shown in Figure 1, is applica-
ble to fabrics with good resilience, such 
as worsted and wool/polyester blended 
fabrics. Therefore the compression and 
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crease recovery properties of such fab-
rics can be characterised by the four-el-
ement model. However, the model has 
not been tested and may not be suitable 
for predicting the bending and recovery 
properties of fabrics with poor elasticity, 
or under large creasing load conditions.

	 Conslusions
To study their bending and recovery 
properties, fabrics are modelled as an 
elastic strip with internal frictional con-
straints. The rheological model proposed 
consists of a standard linear solid element 
and frictional element whose frictional 
constraint couple is a constant. The rela-
tionship between the bending or recov-
ery force and deformation is obtained. 
The bending/recovery force-deformation 
curves predicted and measured demon-
strate good agreement for worsted and 

wool/polyester blended fabrics. Hence 
the model consisting of a standard linear 
solid element and frictional element can 
be used to predict the bending and recov-
ery properties of fabrics under low load 
bending conditions. 
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Fig.5 Comparison of theoretical and experimental results for sample 3 

Fig.6 Comparison of theoretical and experimental results for sample 4 
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