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a major role in eliminating those noises 
which are present in the signals. Various 
noise reduction algorithms have been 
proposed in the literature [3-4]. The noise 
reduction process can be achieved in 
many ways for different fields, such as 
signal/image de-noising [5], image en-
hancement [6], speech processing [7], 
mechanical fault diagnosis [8], biological 
data processing [9], etc. When designing 
a system, one of the most difficult parts 
is to carry out high quality filtering of un-
wanted information. In practice, it is not 
possible to completely eliminate the un-
wanted information. Hence advances in 
technology are used to diminish the noise 
coming from sources down to noise lev-
els at which their negative effect on the 
important signal is negligible. Recent 
applications of several advanced filtering 
techniques have shown that the signal-
to-noise ratio (SNR) can be increased 
by using appropriate filtering techniques 
[10-15]. All these techniques require pri-
or knowledge of the noise, typically the 
noise variance or power spectral density, 
or the instantaneous signal-to-noise ratio 
(SNR), at all times [16].

In this paper, a novel approach for the 
reduction of noise is presented. Instead 
of making modifications to existing hard-
ware, a digital technique was used. Three 
types of digital filters, namely low pass, 
band pass and LMS filters, were inves-
tigated. The filters were designed in the 
MATLAB environment, and the sound 
wave from the impedance tube was inte-
grated with the system. The signals from 
the tube were then processed with the dig-
ital filters to reduce noise, and the sound 
absorption coefficient was estimated. 

	 Sound absorption theory
Noise control is essential in vehicles that 
carry passengers over long distances, as 
they are confined to the same closed envi-
ronment for a long period of time. Auto-
motive companies employ various noise 
control materials at different locations. 
Generally in a car, materials like poly-
ester, nylon, composites of carbon and 
aramid fibres are used [17]. The materi-
als are mainly placed in interior fitments, 
safety facilities, tyre reinforcement, and 
carpets. They are also used for sound and 
thermal insulation.

Sound absorbing materials are used 
to soften the acoustic environment of 
a closed volume by reducing the ampli-
tude of the reflected waves. Absorptive 
materials are resistive in nature, either 
fibrous, porous or, in rather special cases, 
reactive resonators, and provide some de-
gree of absorption at nearly all frequen-
cies (up to 2kHz). The absorption ratio 
and transmission loss, which represent 
the sound reflection and penetrating capa-
bility of a sample material, are measured 
by an impedance tube. The performance 
of sound absorbing materials is evaluat-
ed by the sound absorption coefficient 
(α). The sound propagation in a standing 
wave duct is assumed as stationary plane 
waves with zero mean flow speed, propa-
gating in air. The complex acoustic pres-
sure p(x,t) and particle velocity v(x,t) of 
the medium are given in Equations (1) 
and (2) [18]
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Abstract
Measurement of the sound absorption coefficient using an impedance tube is prone to errors 
due to various reasons. Conventionally minimising the errors requires additional hardware 
or proper calibration of many components used for measurement. This paper proposes a new 
error correction mechanism using a filtering technique. A low cost impedance tube was desi-
gned, developed and its performance was compared with a commercially available high cost 
tube. The errors which arose during the measurement of the sound absorption coefficient were 
minimised using different types of filters (low pass, band pass, LMS filtering). The purpose 
of the filter is to eliminate unwanted signals or noise which occur during the processing of 
analogue signals in the experiment. The system proposed was tested using various porous 
and non-porous functional textile materials and the results validated. A significant reduction 
in error was obtained at all frequency ranges with digital filters.
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	 Introduction
Measurement of the sound absorption 
coefficient is considered to be important 
in determining the acoustic properties of 
materials considered for use in noise con-
trol. The sound absorption coefficient is 
a quantity that represents the percentage 
of sound absorbed by a material. This is 
measured using the phenomenon of the 
reflection of sound waves. Sound waves 
are generated within a medium and trans-
mitted towards the test sample. By meas-
uring the incident and reflected waves, 
the reflection coefficient and, hence, the 
acoustic impedance can be calculated. 
The two standard methods for deter-
mining the absorption coefficient are the 
Standing Wave Ratio (SWR) method and 
transfer function method. The standing 
wave pattern and its pressure measure-
ment are used in the former, whereas in 
the latter, the transfer function is used. 
The acoustic impedance is generally cal-
culated over a wide range of frequencies, 
and these standard methods introduce 
errors in the measurement setup. Signals 
received from nature and those in various 
engineering applications usually consist 
of acoustic background noise. As a result 
the signals have to be cleaned up with 
digital tools before they produce output 
[1-2]. Noise reduction algorithms play 
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where A and B are amplitudes of inci-
dence and reflected waves, respectively, 
ω the angular frequency (rad/s), K the 
wave number, z0 the characteristic im-
pedance (Ω) of air at 20 °C, and ρ (kg/m3)
and c (m/s) are the air density and speed 
of sound in air, respectively. The low cost 
impedance tube is designed as shown in 
Figure 1.

The impedance tube set up contains 
a signal source along with power am-
plifier section. The signal characteristics 
of the existing impedance tube are im-
proved by modifying the signal source 
from generating monotone signals into 
one that generates white noise signals. 
The main purpose of adding white noise 
is to provide a uniform reference frame 
in the time-frequency space. Also a sig-
nal embedded with white noise per-
mits a frequency analysis resolution of 
6.25 Hz in a frequency domain of 125-
10000 Hz.

	 Experimental setup
To test the sound absorption coefficient, 
a transfer function based impedance tube 
was developed. One microphone meth-
od was employed by using a single mi-
crophone at two locations successively, 
thereby avoiding phase mismatch be-
tween two different microphones [19]. 
The theory of transfer function method 
has already been discussed extensively in 
the literature [20]. The impedance tube 
developed along with the entire setup is 
shown in Figure 2. The inner diameter of 
the tube for this design is d = 104.8 mm, 
which gives an upper limiting frequency 
of fu = 1.8 kHz. The spacing between the 
sound source and microphone is taken as 
x = 720 mm, and the total tube length is 
1420 mm. The impedance tube setup con-
tains a signal source along with a power 
amplifier section. The noise circuitry is 
designed by adding the signals gener-
ated from two similar signal generators 
through a resistive network. The signal 
thus generated is amplified using a power 

amplifier circuit and fed into the imped-
ance tube through a loud speaker.

The microphone that is placed inside 
the tube captures the incident signal and 
reflected signal from the sample. These 
signals are too weak to be transmitted 
to recording devices, and hence pream-
plifiers are used to increase the micro-
phone signal to a line-level by providing 
stable gain, while preventing induced 
noise that would otherwise distort the 
signal. The preamplifier is placed close 
to the microphone to reduce the effects 
of noise and interference. The ampli-
tude of the incident and reflected signals 
vary according to the sound absorption 
of the sample. Therefore by monitoring 
the amplitude variations of both signals 
and taking the ratio, the sound absorption 
coefficient of the material is calculated. 
A digital storage oscilloscope, spectrum 
analyser and PC are used for storing and 
analysing these signals.

	 Filtering
The signal acquired may contain noise 
which might be due to ambient sources, 
electromagnetic interference, and faults 
in the electric circuitry during acquisi-
tion. Some noise such as a power fre-
quency hum can be easily identified and 
filtered, whereas others such as human 
and animal noises are harder to classify 
and filter. In this paper, three types of 
digital filters were designed and tested 
with various samples using an impedance 
tube. 

Low pass filtering
If most of the noise added to the signal 
is due to reflections and harmonics, then 
a simple low pass filter is sufficient to 
mitigate the noise in the data. The low 
pass filter is designed with a 3 dB stop 
frequency at a slightly higher frequen-
cy than the original signal frequency. 
The filter attenuates frequency compo-
nents higher than the cutoff frequency 
but maintains the original signal for fre-
quency components less than the cutoff 
frequency. Two-stage RC circuits are 
frequently used as low-pass filters. Their 
frequency response can be derived by 
standard circuit analysis techniques. For 
a sinusoidal input voltage Vi (V), the out-
put voltage from one stage is 
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The low pass filter is modelled with the 
fdesign function in MATLAB. The filter-
ing process is done for different sample 
materials and compared with the system 
without filters.

Band pass filtering
Band pass filters allow only certain fre-
quency ranges and attenuate the compo-
nents of frequency higher and lower than 
the current frequency. Since our input 
source signal is a pure sine wave generat-
ed by a signal generator, band pass filters 
are most ideal for filtering noise in the 
system. The band pass filter is designed 
by using the fdesign function in MAT-
LAB with the sample rate, and frequen-

cies for the stop band and pass band as 
parameters. 

LMS filtering
The noise reduction problem considered 
in this paper is to recover a signal of in-
terest (SOI) x(n) from an observation sig-
nal y(n) which is corrupted by noise v(n), 
as in Equation (8).

 y(n) = x(n) + y(n)   (8)

where v(n) is the additive noise, which 
is a Gaussian random process. It is as-
sumed that the noise v(n) is uncorrelat-
ed with the SOI x(n) signal. By applying 
the Discrete Fourier Transform (DFT) to 
Equation (8), the relationship of the sig-
nal model in the discrete frequency do-
main is obtained. The least-mean-square 
(LMS) filter uses adaptive filtering to 
mimic the performance of another filter 
specified. Considering an N-tap filter, 
with the weight vector w(n) at time in-
stant T, 

w(n) = [w1(n) w2(n) … wN(n)]T  (9)

Let {x(n)} be the input sequence and 
x(n) = [x(n) x(n-1) … x(n – N + 1)]T 
be its vector representation containing 
the immediate past N samples of {x(n)}. 
The filter output y(n) = wT (n)x(n) aims 
to follow a desired signal, and the esti-
mation error e(n) is defined by

e(n) = d(n) – y(n)     (10)
An adaptive filtering algorithm adjusts 
the filter tap weight w(n) at each time in-
stant according to the value of e(n) meas-
ured, as in Equation (11).

 w(n+1) = w(n) + µe(n)x(n)  (11)

where μ is defined as the step-size pa-
rameter which affects the convergence 
behaviour of the filter weights. A block 
diagram of the noise reduction method 
is shown in Figure 3. The unprocessed 
noisy signal is segmented every 40 ms 
in order to achieve effective noise  
reduction.

Figure 3. Block diagram of the noise reduction method proposed.

Signal input Signal output

Signal Digital LMS filter

Adaptive coefficient
calculation

Table 1. Properties of samples.

Material property Glass wool Polyester Comber
Mass per unit area, g/m2 800 400 500
Thickness, mm 12.00 9.00 11.00
Diameter, mm 90 90 90
Porosity, % 55 75 65
Air permeability, cm3/cm2/s 454 351 382
Fibre shape Nearly round Round Tubular shape

Figure 4. Response of filters for glass wool data. Figure 5. Filter response for polyester data.
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In the method proposed, the problem of 
noise cancellation is stated as the process 
of identifying a matching weight vector wt 
for each noisy frame yt, since a whole unit 
with several frames when treated as a seg-
ment of the consecutive speech frame can 
be identified more accurately from noise 
than the whole frames. The LMS filter in 
this case is designed to mimic the output 
from the bandpass filter.

	 Results and discussion
The filters were tested for different 
samples and the consistency of the re-
sults analysed. Three materials – glass 
wool – 800 GSM/40 mm, polyes-
ter – 400 GSM/40 mm and comber – 
500 GSM/40 mm were used for studying 

the effect of filters in reducing the errors 
in the impedance tube. Properties of the 
materials used are given in Table 1.

Figure 4 shows that more signal is at-
tenuated for band pass and LMs filters. 
The signal response of LMS and band 
pass filters are identical.

The similarity of responses between 
LMS and band pass filters are much ev-
ident in this case (Figure 5). However, 
the low pass filter shows reduced ampli-
tude when compared to other filters, sug-
gesting more harmonics and fizzle noise 
present in the data. Also the amplitude of 
the signal is higher when compared to the 
glass wool data, suggesting a lesser ab-
sorbing nature of the material.

In the case of comber (Figure 6), low 
pass filter and band pass filters showed 
a similar response, suggesting the lack 
of higher frequency noise components 
in the signal. But LMS filter shows high-
er attenuation than the other two filters. 
From the observations, it can be suggest-
ed that band pass filtering will be more 
reliable for noise filtering as the signal is 
a pure sine wave without harmonics.

The filtered data for different samples is 
compared for the sound absorption na-
ture. The samples showed nearly a flat 
frequency response. It is observed that 
glass wool has a higher sound absorb-
ing nature when compared to the other 
two samples. The unfiltered data is less 
consistent when compared to filtered 
data, and hence is more reliable for data 
analysis. A comparison of unfiltered and 
filtered data is given in Figures 7 and 8 
and their actual values shown in Table 2.

In Table 2, original data refers to the 
readings obtained from the standard 
B&K tube, while unfiltered data refers to 
those of the impedance tube developed 
without filters, and the filtered data rep-
resents the values after applying filters. It 
can be inferred that the impedance tube 
designed provides an accuracy of 74% 
(error-24%) for glass wool on average. 
With the inclusion of an LMS filter, the 
accuracy increases to 94% (error-6%). 
Similarly for polyester and comber, the 
accuracy of the impedance tube is 73% 

Table 2. Absorption coefficient (α) for different samples.

Glass wool Polyester Comber
F (Hz) original unfiltered filtered original unfiltered filtered original unfiltered filtered

16 0.034 0.036 0.030 0.363 0.369 0.360 0.115 0.119 0.113
20 0.030 0.037 0.030 0.263 0.266 0.260 0.028 0.033 0.026
25 0.043 0.040 0.029 0.187 0.193 0.183 0.027 0.031 0.026
32 0.016 0.042 0.029 0.170 0.177 0.168 0.034 0.038 0.033
40 0.022 0.036 0.030 0.062 0.066 0.059 0.026 0.029 0.024
50 0.020 0.029 0.030 0.074 0.077 0.070 0.031 0.033 0.029
63 0.021 0.034 0.0309 0.051 0.055 0.045 0.035 0.039 0.031
80 0.033 0.042 0.032 0.034 0.038 0.030 0.024 0.028 0.022

100 0.030 0.050 0.034 0.020 0.022 0.016 0.040 0.044 0.038
125 0.037 0.061 0.036 0.015 0.019 0.012 0.047 0.051 0.042
160 0.053 0.075 0.049 0.004 0.009 0.003 0.063 0.066 0.060
200 0.069 0.062 0.057 0.002 0.006 0.002 0.083 0.088 0.080
250 0.089 0.091 0.077 0.009 0.013 0.006 0.096 0.099 0.093
315 0.127 0.129 0.126 0.013 0.017 0.011 0.134 0.138 0.132
400 0.176 0.190 0.170 0.019 0.023 0.014 0.199 0.202 0.197
500 0.229 0.211 0.221 0.021 0.026 0.018 0.301 0.303 0.299
630 0.302 0.296 0.293 0.027 0.031 0.021 0.454 0.458 0.452
800 0.390 0.375 0.383 0.031 0.034 0.026 0.686 0.689 0.682

1000 0.488 0.472 0.437 0.043 0.046 0.039 0.885 0.889 0.882
1250 0.607 0.619 0.610 0.047 0.051 0.043 0.940 0.946 0.936
1600 0.745 0.757 0.741 0.068 0.073 0.062 0.799 0.803 0.798
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and 94%, respectively. With the addition 
of filters, it increased to 88% and 96% 
for polyester and comber, respectively. 
Overall the accuracy of the impedance 
tube was increased by 12% with the LMS 
filter. Thus the reduction of noise in the 
signal measured improves the accuracy 
of the impedance tube.

	 Conslusions
The reduction of noise in any measuring 
instrument is important as it eliminates 
the error due to noise and increases the 
accuracy of measurement. An imped-
ance tube was developed to measure the 
acoustic properties of functional textile 
materials. The values obtained from the 
impedance tube developed deviated from 
the ones obtained from the standard B&K 
tube due to various errors. To eliminate 
the error, a noise reduction method was 
proposed using various types of digital 
filters including low pass, band pass and 
LMS filtering. The filters were designed 
using the MATLAB environment and 
the results analyzed using three types of 
textile materials. LMS filtering was seen 
to perform better in terms of noise reduc-
tion and provides accurate results on par 
with the standard B&K tube. 
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Figure 7. Comparison of unfiltered data.
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Figure 8. Comparison of filtered data.


